
2560
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

LETTER

Classifying Mathematical Expressions Written in MathML

Shinil KIM†, Nonmember, Seon YANG†, Student Member, and Youngjoong KO†a), Nonmember

SUMMARY In this paper, we study how to automatically classify
mathematical expressions written in MathML (Mathematical Markup Lan-
guage). It is an essential preprocess to resolve analysis problems origi-
nated from multi-meaning mathematical symbols. We first define twelve
equation classes based on chapter information of mathematics textbooks
and then conduct various experiments. Experimental results show an accu-
racy of 94.75%, by employing the feature combination of tags, operators,
strings, and “identifier & operator” bigram.
key words: mathematical expressions, MathML, classification

1. Introduction

Although diverse and rich knowledge is available from Web
documents, complicated math equations are often not avail-
able to be analyzed. Most Web documents containing math
materials have utilized images and this fact has led to acces-
sibility problems in reading of documents containing math
expressions for visually impaired persons [1]. MathML
(Mathematical Markup Language) is one of the initiatives
that are created to promote the accessible publication of
math contents over the Web. Since employing MathML al-
lows Web documents to easily describe math expressions
without using images, visually impaired persons have the
increased possibility to acquire the math contents from the
Web.

Our final goal is to convert math expressions written in
MathML into audio version ones. As the Text-To-Speech
technology is able to create audio version of plain text data,
our work can help the visually impaired persons, in particu-
lar, the blind students, directly hear math expressions from
the Web by only converting equations written in MathML
into plain text expressions. This will be very useful in the
current educational situation where web-based educational
materials are increasing. The first step of our proposed
method is to convert each math symbol into an appropri-
ate word. For this, we extract all the math symbols from
Korean high school math textbooks. We then give a name to
each symbol, e.g., “plus” to a symbol ‘+’ and “equal” to a
symbol ‘=.’ However, many ambiguous cases are observed
during this conversion process. For example, the vertical
line ‘|’ is commonly used in math to express absolute value,
whereas it also expresses a determinant such as |A| (‘A’: a

Manuscript received November 24, 2011.
Manuscript revised April 14, 2012.
†The authors are with the Department of Computer Engineer-

ing, Dong-A University, 840 Hadan 2-dong, Saha-gu, Busan, 604–
714, Korea.

a) E-mail: youngjoong.ko@gmail.com
DOI: 10.1587/transinf.E95.D.2560

Table 1 Examples of multi-meaning symbols.

matrix), a vector distance such as |�v |, and so on. If this
ambiguity problem could be effectively resolved, |A| in the
Matrix chapter can be translated into “determinant A”. How-
ever, if impossible, it should be translated into “vertical line,
A, vertical line” by just reading its original symbols. This
translation makes it much more difficult to understand the
math equation.

As a key clue to solve this problem, we develop math
equation classification based on the subjects of a textbook’s
chapters. Table 1 lists some multi-meaning symbols and
their chapter information which can play an important role
to identify the multi-meaning math symbols.

In this paper, we aim to automatically classify math
expressions written in MathML into a dozen chapter-based
classes. We define twelve classes referring to the math text-
books, especially the series of “ ∗ (The Mathe-
matical Manual)”; 1) Set & Proposition, 2) Equation, 3) In-
equality, 4) Math Function, 5) Matrix, 6) Arithmetic pro-
gression, 7) Logarithm, 8) Trigonometric function, 9) Dif-
ferential calculus, 10) Integral calculus, 11) Vector, and
12) Probability. We first define five feature types, and then
classify MathML expressions using Support Vector Ma-
chine (SVM). Experimental results in 5-fold cross valida-
tion show the overall accuracy of 94.75%.

The remainder of the paper is organized as follows.
Section 2 briefly describes the related work. Section 3 ex-
plains various feature types and Sect. 4 presents the experi-
mental results. Section 5 is devoted to the discussion, and
finally Sect. 6 concludes.

2. Related Work

We have not found any research on automatically classifying
math equations. To the best of our knowledge, there is no re-

∗It is the most representative math reference in Korea.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LETTER
2561

ported study yet on this problem. Although [1] is closely re-
lated to our final goal, converting MathML expressions into
audio version ones, they did not classify math equations.

There are some other MathML-based studies we re-
ferred. [2] studied to retrieve math documents including
various equations. [3] created a search system enable user
to search for math formula contents. [4] proposed a sim-
ilarity search method for math equations that are particu-
larly adapted to the tree structures expressed by MathML.
[5] tried to find for a math formula in real-world math doc-
uments, but still offering an extensible level of math aware-
ness.

3. Definition of Feature Types

This section describes the five feature types. MathML has
about 30 tags which all begin with m and include a token
element, e.g. 〈mn〉5〈/mn〉 - numbers; 〈mo〉+〈/mo〉 - opera-
tors; 〈mi〉x〈/mi〉 - identifiers; 〈mrow〉 - a row; 〈mfrac〉 - frac-
tions. After investigating the characteristics of these tags,
we concluded that the following five features best represent
the math equations.

3.1 First Feature: Tag

The first feature is a tag itself which is a basic unit that rep-
resents a math structure. For example, a tag 〈mo〉 means
that an operator follows the tag. Table 2 shows an example
equation. Tags are surrounded by angle parentheses such as
〈mi〉, 〈mo〉, and 〈msup〉. And Table 3 shows some examples.

3.2 Second Feature: Operator

The second feature is an operator which is expressed with
the tag 〈mo〉. Most operators play an important role in clas-
sifying equations. It is true that some operators such as ‘+’
and ‘=’ occur in almost all chapters. On the other hand,
there are many operators that occur in only one chapter as
follows:
∅ (empty set) → “1) Set & Proposition” class

Table 2 Examples of MathML equation.

Table 3 Examples of tags.

∫ (intetral) → “10) Integral calculus” class
// (parallel, slanted)→ “11) Vector” class

3.3 Third Feature: Identifier

The third feature is an identifier expressed with the tag 〈mi〉.
An identifier includes all variables, e.g., ‘a,’ ‘A,’ and some
promised symbols, e.g., “sin,” “log.” For example, “sin(θ)”
is converted into “〈mi〉sin〈/mi〉〈mo〉(〈mo〉〈mi〉θ〈/mi〉
〈mo〉)〈/mo〉.” Since the promised symbol could be a good
feature for equation classification, we determine to employ
the identifier features.

3.4 Fourth Feature: String Bigram

Mathematical expressions occasionally include plain string
as shown in Table 4.

Although string-contained mathML equations do not
occur frequently, they often contain crucial information such
as the string “ [bek-teo]: vector”. Hence, we consider
syllable bigrams in each word as our fourth feature. For
example, the equation in Table 4 has nine syllable bigrams:
“ [jung-sim],” “ [ban-ji],” “ [ji-reum],” “ [in],”
“ [won-eui],” “ [bek-teo],” “ [teo-bang],” “
[bang-jeong],” “ [jeong-sik].”

3.5 Fifth Feature: “Identifier & Operator” Bigram

The fifth feature is an “identifier & operator” bigram (here-
after, I&O). It is represented as one of the following three
forms: “id/id,” “id/op,” and “op/op” (“id”: identifier and
“op”: operator). This feature can compensate for each of
the operators and identifiers. For example, the operator fea-
tures such as “right arrow” or “vertical line” imply that an
equation would belong to the “11) Vector” class. On the
other hand, the “cosine” identifier implies that the equation
would be assigned to the “8) Trigonometric function” class.

Table 4 String-contained MathML expression.

2562
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Table 5 I&Os extracted from −−→OA · −−→OB = |−−→OA| · |−−→OB| cos θ.

Many similar cases are found in our corpus. After various
experiments, we observe that these ambiguity problems can
be considerably reduced via I&Os. In the case of the above
equation, the “vertical line & cosine” bigram feature plays
an important role in classifying that. Table 5 lists I&Os ex-
tracted from an example equation.

As will be described in the experiment section, I&Os
are helpful for improving overall performance†.

4. Experiments

We first defined twelve classes and then selected a total of
400 equations (30 ∼ 40 equations per each class) from
the Korean high school math textbooks according to their
importance. We manually converted these equations into
MathML expressions, and then extracted features. Table 6
shows the number of distinct features per class in the col-
lected equations.

As a learning technique, we employed SVM using
the linear kernel. We used the TF/IDF scheme for feature
weighting and used “accuracy” for an evaluation measure.

Table 7 shows the experimental results. We investi-
gated all the possible combination cases of feature types.
We first experimented using each feature type separately.
Operators showed the highest performance, an accuracy of
76.75%. The other four feature types showed the perfor-
mance of 47.25 ∼ 69.75%.

When we combined two of five feature types, top three
cases showed same performance of 80.50%. Interestingly,
these three cases were composed of two types among three
feature types: tags, operators or I&Os. The other seven
cases showed relatively low performances. At this stage, we
carefully predicted that tags + operators + I&Os could per-
form well in the experiments for three types combinations
by the experimental results of two types combinations. Ac-
tually, the combination, tags + operators + I&Os, showed
the highest performance of 93.25%

Next, we attempted to combine all the four types.
Among five cases, tags + operators + strings + I&Os
showed the best performance of 94.75%. However, the ex-
periment using all the five types achieved the lower perfor-
mance reduced by 2.5%. We finally conclude that tags +
operators + strings + I&Os is the most effective combina-

Table 6 Number of distinct features per class.

Table 7 Results of top 3 combinations according to each number of com-
bined feature types; performances with more than 93% are in bold.

tion for math equation classification.

5. Discussion: Error Analysis

This section briefly introduces an error analysis. After in-
vestigating misclassified equations, we could find that some
features are seriously biased. For example, Eq. (1) has the
class label of “9) Differential calculus”, while it was classi-
fied into “4) Math Function” by the proposed method. We
think that an I&O feature of “f,(” is the cause of this error.

y′x=1 = limΔ→0
f (1 + Δx) − f (1)

Δx
(1)

†We conducted several experiments with various sub-
combinations of I&Os. We could achieve the best performance
when all of the three forms (“id/id,” “id/op,” and “op/op”) were
employed simultaneously.

LETTER
2563

We also found that some equations have ambiguity prob-
lems. For example, Eq. (2) is possible to have two classes,
“9) Differential calculus” and “10) Integral calculus.”

d
dx

∫ x

1
(t3 − t2)dt =

(
1
4

x4 − 1
3

x3 +
1
12

)′
= x3 − x2 (2)

Therefore, we think that it could be necessary for the pro-
posed method to assign multiple classes for one equation. In
addition, a kind of feature selection technique could be ap-
plied to solve the case of Eq. (1). That is, the classification
strength of features can be measured by the feature selec-
tion technique and it can be utilized for math classification.
In Eq. (1), “f,(” occurs twice but “lim” should be considered
as a more important feature. However, simple the TF/IDF
scheme cannot reflect this fact. These are regarded as the
future work.

6. Conclusion

In this paper, we study the problem of classifying math
equations. As far as we know, this is the first study on the
problem. Our experimental results showed that the proposed
method can be effectively used for math equation classifica-
tion.

We plan to conduct more experiments for obtaining
better performance. We also consider a method which gives

multiple classes for one equation as mentioned in the discus-
sion section. In addition, we have been collecting a consid-
erable number of equations for a larger dataset. We will con-
tinue to study for our final goal, converting MathML equa-
tions into audio version ones.

Acknowledgement

This work was supported by the Dong-A University research
fund.

References

[1] H. Ferreira and D. Freitas, “Audio-math: Towards automatic readings
of mathematical expressions,” Proc. Human Computer Interaction In-
ternational, 2005.

[2] J. Shin and H. Kim, “An equation retrieval system based on weighted
sum of heterogenous indexing terms,” The Korean Institute of Infor-
mation Scientists and Engineers, vol.37, no.10, pp.723–801, 2010.

[3] M. Adeel, H.S. Cheung, and S.H. Khiyal, “Math GO! Prototype of
a content based mathematical formula search engine,” J. Theoreti-
cal and Applied Information Technology, vol.4, no.10, pp.1002–1012,
2008.

[4] K. Yokoi and A. Aizawa, “An approach to similarity search for math-
ematical expressions using MathML,” Towards a Digital Mathematics
Library, pp.27–35, 2009.

[5] J. Misutka and L. Galambos, “Extending full text search engine
for mathematical content,” Towards a Digital Mathematics Library,
pp.55–67, 2008.

